viernes, 6 de abril de 2012

DIVISION


La división celular es una parte muy importante del ciclo celular en la que una célula inicial se divide para formar células hijas. Gracias a la división celular se produce el crecimiento de los seres vivos, organismos pluricelulares con el crecimiento de los Tejidos (biología) y la reproducción vegetativa en seres unicelulares.
Los seres pluricelulares reemplazan su dotación celular gracias a la división celular y suele estar asociada con la diferenciación celular. En algunos animales la división celular se detiene en algún momento y las células acaban envejeciendo. Las células senescentes se deterioran y mueren debido al envejecimiento del cuerpo. Las células dejan de dividirse porque los telómeros se vuelven cada vez más cortos en cada división y no pueden proteger a los cromosomas como tal.

RESUMEN

La division celular es una parte muy importante del ciclo celular en la que una celula (biologia) celula inicial se divide para formar celula hijas gracies a la division celula se produce el crecimiento de los ceres vivos organismos plricelulares con el crecimiento de los tejidos biologia y la reproducion vgetacion en ceres un celulares

MITOSIS

INTERFACE
Durante la interfase, la célula se encuentra en estado basal de funcionamiento. Es cuando se lleva a cabo la replicación del ADN y la duplicación de los organelos para tener un duplicado de todo antes de dividirse. La interfase se divide en 3 periodos principales conocidos como G1, S y G2 (G viene de growth –crecimiento- en ingles)
  • la fase G1 es la mas variable, porque puede que las células duren horas, días, meses o años. Cuando las células que se reproducen poco entran en G1, pueden detener su ciclo celular y entrar en un estado de reposo G0.
  • la fase S, es el proceso de síntesis, cuando la célula replica su ADN y llega a tener 46 pares de cromosomas, para que cuando se divida, cada célula se queda con 23 y 23 iguales.
  • la fase G2, es el segundo periodo de crecimiento donde la célula asegura que tanto el material genético como sus organelos estén duplicados por completo antes de dividirse, y termina cuando comienza la división.
RESUMEN
La duración del ciclo celular en una célula típica es de 16 horas: 5 horas para G1, 7 horas para S, tres horas para G2 y 1 hora para la división. Este tiempo depende del tipo de célula que sea.
Es el periodo de reposo que experimenta una celula entre division en este periodo los cromosomas aparecen como filamentos delgados y estendidos cada uno de los doscentriolas se aparecen con un centriolo hijo de tamaño menor cuando la interface esta a un pñunto de terminar los cromosomasse duplican es decir cada cromosoma origina un cromosoma hijo o cromatida las dos cromatidas de un cromosoma se mantenen unidas por el centrometro los centridos se separan para establecen los pelos de manera que empieza.

PROFACE

Se produce en ella la condensación del material genético (ADN, que en interfase existe en forma de cromatina), para formar unas estructuras altamente organizadas, los cromosomas. Como el material genético se ha duplicado previamente durante la fase S de la Interfase, los cromosomas replicados están formados por dos cromátidas, unidas a través del centrómero por moléculas de cohesinas.

Uno de los hechos más tempranos de la profase en las células animales es la duplicación del centrosoma; los dos centrosomas hijos (cada uno con dos centriolos) migran entonces hacia extremos opuestos de la célula. Los centrosomas actúan como centros organizadores de microtúbulos, controlando la formación de unas estructuras fibrosas, los microtúbulos, mediante la polimerización de tubulina soluble.[6] De esta forma, el huso de una célula mitótica tiene dos chochas que emanan microtúbulos.
En la profase tardía desaparece el nucléolo y se desorganiza la envoltura nuclear.

RESUMEN
Durante la profece ocurren cambios importate tanto en el nucleo como en el citoplasma dicho cambios se pueden sintetisar de la siguiente forma:
  • Los cromosomas se en roscan y se condesan en el alto grado en esta etapa es importante hacer en recuerdode ellos ya que nose aprecia donde termina el uno y donde el otro
METAFACE
A medida que los microtúbulos encuentran y se anclan a los cinetocoros durante la prometafase, los centrómeros de los cromosomas se congregan en la "placa metafásica" o "plano ecuatorial", una línea imaginaria que es equidistante de los dos centrosomas que se encuentran en los dos polos del huso.[11] Este alineamiento equilibrado en la línea media del huso se debe a las fuerzas iguales y opuestas que se generan por los cinetocoros hermanos. El nombre "metafase" proviene del griego μετα que significa "después."
Dado que una separación cromosómica correcta requiere que cada cinetocoro esté asociado a un conjunto de microtúbulos (que forman las fibras cinetocóricas), los cinetocoros que no están anclados generan una señal para evitar la progresión prematura hacia anafase antes de que todos los cromosomas estén correctamente anclados y alineados en la placa metafásica. Esta señal activa el checkpoint de mitosis.[12]

RESUMEN
En esta etapa los cromosomas se ubican en la region central de la celula. donde se forma la denominada placa ecuatorial,los centrolos se colocan en los polos o extremos de la celula los cromosomas se disponen en el centro de la celula esd ecir en la plaza rcuariotal en ese monmento se observa perfectamente la formacion del huso acromatico

ANAFACE
Cuando todos los cromosomas están correctamente anclados a los microtúbulos del huso y alineados en la placa metafásica, la célula procede a entrar en anafase (del griego ανα que significa "arriba", "contra", "atrás" o "re-"). Es la fase crucial de la mitosis, porque en ella se realiza la distribución de las dos copias de la información genética original.
Entonces tienen lugar dos sucesos. Primero, las proteínas que mantenían unidas ambas cromatidas hermanas (las cohesinas), son cortadas, lo que permite la separación de las cromátidas. Estas cromátidas hermanas, que ahora son cromosomas hermanos diferentes, son separados por los microtúbulos anclados a sus cinetocoros al desensamblarse, dirigiéndose hacia los centrosomas respectivos.
A continuación, los microtúbulos no asociados a cinetocoros se alargan, empujando a los centrosomas (y al conjunto de cromosomas que tienen asociados) hacia los extremos opuestos de la célula. Este movimento parece estar generado por el rápido ensamblaje de los microtúbulos.[13]
Estos dos estadios se denominan a veces anafase temprana (A) y anafase tardía (B). La anafase temprana viene definida por la separación de cromátidas hermanas, mientras que la tardía por la elongación de los microtúbulos que produce la separación de los centrosomas. Al final de la anafase, la célula ha conseguido separar dos juegos idénticos de material genético en dos grupos definidos, cada uno alrededor de un centrosoma.

RESUMEN
En esta etapa las cromatidas o cromosomas hermanas se separan cada uno de ellos de desplzan hacia los polos apuestos de esta manera los cromosomas de distribuyen por igual lacia cada centriolo.

TELOFACE
La telofase (del griego τελος, que significa "finales") es la reversión de los procesos que tuvieron lugar durante la profase y prometafase. Durante la telofase, los microtúbulos no unidos a cinetocoros continúan alargándose, estirando aún más la célula. Los cromosomas hermanos se encuentran cada uno asociado a uno de los polos. La membrana nuclear se reforma alrededor de ambos grupos cromosómicos, utilizando fragmentos de la membrana nuclear de la célula original. Ambos juegos de cromosomas, ahora formando dos nuevos núcleos, se descondensan de nuevo en cromatina. La cariocinesis ha terminado, pero la división celular aún no está completa.sucede una secuencia inmediata al terminar 
RESUMEN
Esta face los cromosomas se alegran por lo cual se hacen menos visibles alrededor de ellos empiezan a formace la membrana nuclear
  • se producen un estragulamiento en la parte central de la celula que termina dividiendo
  • durante la teloface comienza la division del citoplasma que ocurren en forma diferenta  en las celulas vegetales y animales
  • despues de formadas las dos celulas hijas entran nuevamente en interface preparandose para nueva division

miércoles, 4 de abril de 2012

PARED CELULAR



es otro componente importante de las paredes celulares . Es un polisacárido no fibrilar, rico en ácido D-galacturónico, heterogéneamente ramificado y muy hidratado. Los componentes mayoritarios de la pectina son: los homogalacturonanos (HGA) y ramnogalacturonanos I (RG I). La matriz de pectina determina la porosidad de la pared y proporciona cargas que modulan el pH de la pared.
Lignina y suberina son polímeros complejos compuestos por fenilpropanoides y alcoholes aromáticos. Se acumulan en algunas paredes secundarias y, en casos excepcionales, en paredes primarias. La lignina, la suberina y ceras como la cutina, le confieren impermeabilidad al agua a los tejidos en los que se depositan.La pared celular bacteriana está hecha de peptina zacarosa (también denominado mureína), que está formado por cadenas de polisacárido entrecruzadas por péptidos inusuales que contienen aminoácidos D.4 Las paredes celulares bacterianas son diferentes de las paredes de plantas y hongos que están hechas de celulosa y quitina, respectivamente.5 También son diferentes de las paredes de Archaea, que no contienen peptidoglicano. La pared celular es esencial para la supervivencia de muchas bacterias y el antibiótico penicilina puede matar a las bacterias inhibiendo un paso en la síntesis del peptidoglicano.6
  • En las bacterias Gram-positivas la pared celular contiene una capa gruesa de peptidoglicano además de ácidos teicoicos, que son polímeros de glicerol o ribitol fosfato. Los ácidos teicoicos se unen al peptidoglocano o a la membrana citoplasmática.
  • En las bacterias Gram-negativas la capa de peptidoglicano es relativamente fina y se encuentra rodeada por a una segunda membrana lípida exterior que contiene lipopolisacáridos y lipoproteínas. La capa de peptidoglicano se une a la membrana externa por medio de lipoproteínas.
La mayoría de las bacterias tienen una pared celular Gram-negativa y solamente Firmicutes y Actinobacteria (conocidas previamente como bacterias Gram-positivas de contenido GC bajo y bacterias Gram-positivas de contenido GC alto, respectivamente) tienen paredes Gram-positivas.7 Estas diferencias en estructura pueden producir diferencias en la susceptibilidad antibiótica, por ejemplo, la vancomicina puede matar solamente a bacterias Gram-positivas y es ineficaz contra patógenos Gram-negativos, tales como Haemophilus influenzae o Pseudomonas aeruginosa.

RESUMEN

La pared celular proporciona un recinta protectora a la célula determinado la forma y el tamaño de la celula ademas la rigidez de la pared permite creser a la planta erquide hasta poder exponer una mayor superficie a la luz solar. controlar el crecimiento celular las paredes se van a ablandar por unas zonas ya a enolusecer por otras primitiendo asi el crecimient de la celula.


La celula esta rodeada por una membrana denominada membrana plasticar la membrana delimita el territorio de la celula ya contriola el contenido quimico de la célula en la composición quimica de la membrana entre a forma parte lipidos proteina y glucidos em proporcion apronimados de 40, 50, y 10 respectivamente los lipidos forma una dolele capa y las proteinas de disponen
    

martes, 3 de abril de 2012

CROMOSOMAS


 En biología, se denomina cromosoma (del griego χρώμα, -τος chroma, color y σώμα, -τος soma, cuerpo o elemento) a cada uno de los pequeños cuerpos en forma de bastoncillos en que se organiza la cromatina del núcleo celular durante las divisiones celulares (mitosis y meiosis). En las células eucariotas y en las arqueobacterias (a diferencia que en las células procariotas), el ADN siempre se encontrará en forma de cromatina, es decir asociado fuertemente a unas proteínas denominadas histonas. Este material se encuentra en el núcleo de las células eucariotas y se visualiza como una maraña de hilos delgados. Cuando el núcleo celular comienza el proceso de división (cariocinesis), esa maraña de hilos inicia un fenómeno de condensación progresivo que finaliza en la formación de entidades discretas e independientes: los cromosomas. Por lo tanto, cromatina y cromosoma son dos aspectos morfológicamente distintos de una misma entidad celular.1

Diagrama de un cromosoma eucarióticoduplicado y condensado (en metafasemitótica). (1) Cromátida, cada una de las partes idénticas de un cromosoma luego de la duplicación del ADN. (2)Centrómero, el lugar del cromosoma en el cual ambas cromátidas se tocan. (3) Brazo corto. (4) Brazo largo.
Cuando se examinan con detalle durante la mitosis, se observa que los cromosomas presentan una forma y un tamaño característicos. Cada cromosoma tiene una región condensada, o constreñida, llamada centrómero, que confiere la apariencia general de cada cromosoma y que permite clasificarlos según la posición del centrómero a lo largo del cromosoma. Otra observación que se puede realizar es que el número de cromosomas de los individuos de la misma especie es constante. Esta cantidad de cromosomas se denomina número diploide y se simboliza como2n. Cuando se examina la longitud de tales cromosomas y la situación del centrómero surge el segundo rasgo general: para cada cromosoma con una longitud y una posición del centrómero determinada existe otro cromosoma con rasgos idénticos, o sea, casi todos los cromosomas se encuentran formando parejas. Los miembros de cada par se denominan cromosomas homólogos.
RESUMEN
En biología se denomina cromosoma (del griego chroma col or y soma cuerpo o elemento) a cada uno de los pequeños en forma de bastoncillos en que organiza la cromatina de nucleo celular durante la divición celulas (mitosis ymieosis ) en las celulas durante eucariotas en las arqueobacterias (a diferencia que en las histonas este material se encuentra en el material en el nucleo de las celulas eucariotas)Una excepción importante en el concepto de parejas de cromosomas homólogos es que en muchas especies los miembros de una pareja, los cromosomas que determinan el sexo o cromosomas sexuales, no tienen usualmente el mismo tamaño, igual situación del centrómero, la misma proporción entre los brazos o, incluso, los mismos loci. En la imagen puede observarse, por ejemplo, que el cromosoma Y (que determina el sexo masculino en humanos) es de menor tamaño y carece de la mayoría de los loci que se encuentran en el cromosoma X

COMPLEJO GOLGI


El aparato de Golgi es un orgánulo presente en todas las células eucariotas excepto los glóbulos rojos y las células epidérmicas. Pertenece al sistema de endomembranas del citoplasma celular. Está formado por unos 80 dictiosomas (dependiendo del tipo de célula), y estos dictiosomas están compuestos por 4 o 6 cisternas (sáculos) aplanadas rodeados de membrana que se encuentran apilados unos encima de otros, y cuya función es completar la fabricación de algunas proteínas. Funciona como una planta empaquetadora, modificando vesículas del retículo endoplasmático rugoso. El material nuevo de las membranas se forma en varias cisternas del Golgi. Dentro de las funciones que posee el aparato de Golgi se encuentran la glicosilación de proteínas, selección, destinación, glicosilación de lípidos, almacenamiento y distribución de lisosomas y la síntesis de polisacáridos de la matriz extracelular. Debe su nombre a Camillo GolgiPremio Nobel de Medicina en 1906 junto a Santiago Ramón y Cajal.El aparato de Golgi se compone de una serie de estructuras denominadas cisterna. Éstas se agrupan en número variable, habitualmente de 4 a 8, formando el dictiosoma. Presentan conexiones tubulares que permiten el paso de sustancias entre las cisternas. Los sáculos son aplanados y curvados, con su cara convexa (externa) orientada hacia el retículo endoplasmático. Normalmente se observan entre 4 y 8, pero se han llegado a observar hasta 60 dictiosomas.1 Alrededor de la cisterna principal se disponen las vesículas esféricas recién exocitadas. El aparato de Golgi se puede dividir en tres regiones funcionales:


  • Región Cis-Golgi: es la más interna y próxima al retículo. De él recibe las vesículas de transición, que son sáculos con proteínas que han sido sintetizadas en la membrana del retículo endoplasmático rugoso (RER), introducidas dentro de sus cavidades y transportadas por e llumen hasta la parte más externa del retículo. Estas vesículas de transición son el vehículo de dichas proteínas que serán transportadas a la cara externa del aparato de Golgi.
  • Región medial: es una zona de transición.
  • Región Trans-Golgi: es la que se encuentra más cerca de la membrana plasmática. De hecho, sus membranas, ambas unitarias, tienen una composición similar.

RESUMEN
Es la modificacion de sustancias sintetizar en el RER en el aparato del golgi de transformacion las sustancias procedentes de RER estas transformaciones pueden ser agregaciones de restos d  e carbohidratos para la estructura definitiva
secreciones celular las sustancias atrviesan todo saculos de aparato del golgi y cuando llegan a la casa trans del dictiosoma en forma de vesicula de secrecion 

RETÍCULO ENDOPLASMATICO



El retículo endoplasmático es una red interconectada de tubos aplanados y sáculos comunicados entre sí, que intervienen en funciones relacionadas con la síntesis proteica, metabolismo de lípidosy algunos esteroides, así como el transporte intracelular. Se encuentra en la célula animal y vegetal pero no en la célula procariota. Es un orgánulo encargado de la síntesis y el transporte de las proteínas.
Imagen de un núcleo, el retículo endoplasmático y el aparato de Golgi.
(1) Núcleo. (2) Poro nuclear. (3) Retículo endoplasmático rugoso (RER). (4) Retículo endoplasmático liso (REL). (5) Ribosoma en el RE rugoso. (6) Proteínas siendo transportadas. (7) Vesícula (transporte). (8) Aparato de Golgi. (9) Lado cis del aparato de Golgi. (10) Lado trans del aparato de Golgi. (11) Cisternas del aparato de Golgi.
El retículo endoplasmático rugoso se encuentra unido a la membrana nuclear externa mientras que el retículo endoplasmático liso es una prolongación del retículo endoplasmático rugoso.
  • El retículo endoplasmático rugoso tiene esa apariencia debido a los numerosos ribosomas adheridos a su membrana mediante unas proteínas denominadas "riboforinas". Tiene unos sáculos más redondeados cuyo interior se conoce como "luz del retículo" o "lumen" donde caen las proteínas sintetizadas en él. Está muy desarrollado en las células que por su función deben realizar una activa labor de síntesis, como las células hepáticas o las células del páncreas.
  • El retículo endoplasmático liso no tiene ribosomas y participa en el metabolismo de lípidos.
El retículo endoplasmático tiene variedad de formas: túbulos, vesículas, cisternas. En algunos casos en una misma célula se pueden observar los tres tipos.
RESUMEN
El retículo es una es una red interconectada de tubos aplanados los saculos comunicada entre si que intervienen en funciones relacionadas con la síntesis proteico del metabolismo de lipidos y algunos esteriorodes hace como el trasporte intercelular se encuentra en la celula animal y vegetales pero no en la celula procariota es un organelo encargado de la sistesis y el transporte de las proteinas
- el reticulo endoplasmatico rugoso tiene esa aparencia debido a los numerosos ribosomas adberidos a su membrana mediante unas proteinas deniminadas ribosomas

lunes, 2 de abril de 2012

RIBOSOMA


Los ribosomas son complejos macromoleculares de proteínas y ácido ribonucleico (ARN) que se encuentran en el citoplasma, en las mitocondrias, enretículo endoplasmatico y en los cloroplastos. Son un complejo molecular encargado de sintetizar proteínas a partir de la información genética que les llega del ADN transcrita en forma de ARN mensajero (ARNm). Sólo son visibles al microscopio electrónico, debido a su reducido tamaño (29 nm en célulasprocariotas y 32 nm en eucariotas). Bajo el microscopio electrónico se observan como estructuras redondeadas, densas a los electrones. Bajo el microscopio óptico se observa que son los responsables de la basofilia que presentan algunas células. Están en todas las células (excepto en losespermatozoides). Los ribosomas no se definen como orgánulos, ya que no existen endomembranas en su estructura.
Subunidad pequeña del ribosoma.
En células eucariotas, los ribosomas se elaboran en el núcleo pero desempeñan su función de síntesis en el citosol. Están formados por ARN ribosómico(ARNr) y por proteínas. Estructuralmente, tienen dos subunidades. En las células, estos orgánulos aparecen en diferentes estados de disociación. Cuando están completos, pueden estar aislados o formando grupos (polisomas); las proteínas sintetizadas por ellos actúan principalmente en el citosol; también pueden aparecer asociados al retículo endoplasmático rugoso o a la membrana nuclear, y las proteínas que sintetizan son sobre todo para la exportación.
Tanto el ARNr como las subunidades de los ribosomas se suelen nombrar por su coeficiente de sedimentación en unidades Svedberg. En las células eucariotas, los ribosomas del citoplasma se denominan 80 S. En mitocondrias y plastos de eucariotas, así como en procariotas, son 70 S.
Subunidad grande del ribosoma
RESUMEN
Los ribosomasson complejos macromoleculares de proteinas y acido ribonucleido (ARN) que se encuentran en el citoplasma en las mitocondrias enreticulo endoplasmatico y en los cloroplastos son un complejo molecular encargado de sintetizar proteinas a partir de la información genetica que les llega del ADN transcrita en forma de ARN masagero (ARNM) solo son visibles al microscopio electronico debido a su reducion de tamaño (29 nm en celulasprocariota y 32 nm en eucariotas) bajo el microspopio electronico se observa comi estructura reodeados densas a los electrones bajo el microscopio electronico se observa que son los reponsables de la basofilia que presenta alguna celula